Одеський національний університет імені І. І. Мечникова, Одеса, Україна
Одеський національний медичний університет, Одеса, Україна
Національний технічний університет «Дніпровська політехніка», Дніпро, Україна
DOI 10.32782/2226-2008-2025-4-16
Для забезпечення захисту організму людини від впливу отруйних, небезпечних хімічних речовин у рамках технологій тактичної медицини виробляються засоби індивідуального й колективного захисту. Органічні аміни широко використовуються як хемосорбенти у складі протигазових елементів вказаних засобів, що робить аналіз та оцінку їх токсичності, зокрема інгаляційної, дуже важливою. Огляд експериментального матеріалу, присвяченого цій тематиці, проводився по відкритим наукометричним базам даних. Відмічено, що вивчення інгаляційної токсичності є складнішим, ніж інші види токсикологічних досліджень. Розглянуті особливості визначень токсичності в рядах летючих органічних амінів, відмічені труднощі їх зіставлення. Інгаляційну токсичність легколетючих амінів знижають введенням у них полярних гідроксогруп, створенням на їх основі полімерів або сополімерів, зокрема імпрегнованих волокнистих матеріалів, біорозкладанню яких сприяє використання штучних природних або синтетичних волокон. Відмічається, що визначення залежності будова – токсичність (зокрема, інгаляційна) для амінів потребує подальших досліджень у порівняних умовах.
Ключові слова: інгаляційна токсичність, специфічна токсичність, алкіламіни, ліпофільність, кореляції.
REFERENCES
- Ennan AA, Khoma RE. Impregnated fibrous chemosorbents of acid gases for respiratory purpose [Imprehnovani voloknysti khemosorbenty kyslykh haziv respiratornoho pryznachennia] Visn Odes nac univ, Him. 2017;22(6):751–760 (in Ukrainian).
- Khoma RE. Acid-base interaction and sulfooxidation at chemosorption of sulfur dioxide by alkylamines aqueous solutions. Thesis of Doctor’s degree dissertation, 02.00.01. Kyiv; 2019. 427 p. (in Ukrainian).
- Ennan AA-A, Dlubovskii RM, Khoma RE. Water role in the gases chemosorporation processes by sorption-active materials [Rol vody u protsesakh khemosorbtsii haziv sorbtsiino-aktyvnymy materialamy]. Visn Odes nac univ, Him. 2021;26(3): 6–26. DOI: 10.18524/2304-0947.2021.3(79).240717 (in Ukrainian).
- Ennan AA-A, Dlubovskii RM, Khoma RE. Non-woven ion-exchange fibrous materials in air sanitary cleaning. Ukr Chem 2021;87(7):11–32. DOI: 10.33609/2708-129x.87.07.2021.3-24.
- Ennan AA-A, Khoma R, Dlubovskii RM, Zakharenko YS, Benkovska T, Knysh IM. Mono- ta bifunktsionalni imprehnovani voloknysti khemosorbenty respiratornoho pryznachennia [Mono- and bifunctional impregnated fiber chemosorbents for respiratory purpose]. Visn Odes nac univ, Him. 2022;27(1):5–30. DOI: 10.18524/2304-0947.2022.1(81).248297.
- Wang D, Xie J, Li G, et al. Multiobjective Evaluation of Amine-Based Absorbents for SO2 Capture Process Using the pKa Mathematical Model. ACS Omega. 2022;7(3):2897–2907. DOI: 10.1021/acsomega.1c05766.
- Kim K, Lim H, Park HS, Kang JH, Park J, Song H. Capture of Sulfur Dioxide in Ship Exhaust Gas by Tertiary Amine Absorbents. Chem Eng Techn. 2024;47(10):e202300328. DOI: 10.1002/ceat.202300328.
- Gupta PK. Problem Solving Questions in Toxicology. Springer, Cham; 2020. 346 p. DOI: 10.1007/978-3-030-50409-0.
- de Wolf W, Lieder PH, Walker JD. Application of QSARs: Correlation of Acute Toxicity in the Rat Following Oral or Inhalation Exposure. QSAR Comb Sci. 2004;23(7):521–525. DOI: 10.1002/qsar.200430861.
- Raevsky OA, Modina EA, Raevskaya OE. QSAR models of the inhalation toxicity of organic compounds. Pharm Chem J. 2011;45:165–169. DOI: 10.1007/s11094-011-0585-z.
- Rusin A, Stolecka K. An Analysis of Hazards Caused by Emissions of Amines from Carbon Dioxide Capture Installations. Pol J Environ Stud. 2016;25(3):909–916.
- Svendsen C, Låg M, Lindeman B, Andreassen M, Granum B. New knowledge on health effects of amines and their derivatives associated with CO2 2023. NIPH. 24 p.
- Iwasaki M, Tsugane S. Dietary heterocyclic aromatic amine intake and cancer risk: epidemiological evidence from Japanese studies. Genes Env. 2021;23:33. DOI: 10.1186/s41021-021-00202-5.
- Gheni SA, Ali MM, Ta GC, Harbin HJ, Awad SA. Toxicity, Hazards, and Safe Handling of Primary Aromatic Amines. ACS Chem Health Saf. 2024;31(1):8–21. DOI: 10.1021/acs.chas.3c00073.
- Bakand S. Cell culture techniques essential for toxicity testing of inhaled materials and nanomaterials in vitro. J Tissue Sci Eng. 2016;7(3):1000181-1–1000181-5.
- Pauluhn J. Derivation of thresholds for inhaled chemically reactive irritants: Searching for substance-specific common denominators for read-across prediction. Regul Toxicol Pharm. 2022;130:105131. DOI: 10.1016/j.yrtph.2022.105131.
- Wang X, Liu W, Duan H, Fang P, Zhang N, Zhou X. Study on quantitative structure-biodegradability relationships of amine collectors by GFA-ANN method. J Hazard Mater. 2021;415:125628. DOI: 10.1016/j.jhazmat.2021.125628.
- Haney JT, McCant D, Honeycutt ME, Lange S. Development of an inhalation reference concentration for diethanolamine. Regul Toxicol. Pharmacol. 2018;92:55–66. DOI: 10.1016/j.yrtph.2017.11.011.
- Gamer AO, Rossbacher R, Kaufmann W, van Ravenzwaay B. The Inhalation toxicity of di- and triethanolamine upon repeated exposure. Food Chem. Toxicol. 2008;46(6):2173–2183.
- Tualeka AR, Jalaludin J. Observation of Adverse Effect on Level Ammonia through Expression of CD8 Lymphocyte in Mice. Malaysian J Med Health Sci. 2018;14(SP2):71–77.
- Lathouri M, Korre A, Dusinska M, Durucan S. Human Health hazard assessment strategy for amine emissions around PCC facilities. 2022. 67 p.
- Hartwig A, MAK Commission, Arand M. N′-(3-Aminopropyl)-N′-dodecylpropane-1,3-diamine. The MAK Collection for Occupational Health and Safety. 2023;8(1):1–20. DOI: 10.34865/mb237282e8_1or.
- Piccardo MT, Geretto M, Pulliero A, Izzotti A. Odor emissions: A public health concern for health risk perception. Res. 2022;204:An 112121.
- TLV Chemical Substances Introduction. Available from: https://acgih.org/science/tlv-bei-guidelines/tlv-chemical- substances-introduction/.
- Jang J-K. Amines as occupational hazards for visual disturbance. Health. 2016;54(2):101–115. DOI: 10.2486/ind-health.2015-0071.
- Mozaffari S, Valipour F, Jalilian ZH, Yavar A. Quantitative risk analysis and control measure evaluation for workplace exposure to aliphatic amines: A case study in the foundry sector. Arch. Health Sci. 2024;11(3):160–166. DOI: 10.48307/ iahsj.2024.411438.1043.
- Order of Ministry of Health of Ukraine No. 813. 10.05.2024. Derzhavni medyko-sanitarni normatyvy “Hranychno dopustymi kontsentratsii khimichnykh i biolohichnykh rechovyn v atmosfernomu povitri naselenykh mists” [State medical and sanitary standards “Maximum permissible concentrations of chemical and biological substances in the atmospheric air of populated areas”] (in Ukrainian). Available from: https://zakon.rada.gov.ua/laws/show/en/z0763-24?lang=uk#Text.
- Alarie Y. Toxicological evaluation of airborne chemical irritation allergens using respiratory reflex reactions. In BJK Leong (Ed.), Proceedings of the International Toxicology and Technology Symposium. Ann Arbor Science Publications, Ann Arbor; 1981:207–231.
- Ballantyne B. Peripheral Chemosensory Irritation: Fundamentals, Investigation and Applied Considerations. In General, Applied and Systems Toxicology. John Wiley & Sons; 2009. 32 p. DOI: 10.1002/9780470744307.gat060.
- Escher BI, Glauch L, Konig M, Mayer P, Schlichting R. Baseline Toxicity and Volatility Cutoff in Reporter Gene Assays Usedfor High-Throughput Screening. Res. Toxicol. 2019;32(8):1646−1655. DOI: 10.1021/acs.chemrestox.9b00182.
- Alarie Y, Schaper M, Nielsen GD, Abraham MH. Structure-activity relationships of volatile organic chemicals as sensory irritants. Arch Toxicol. 1998;72(3):125–140. DOI: 10.1007/s002040050479.
- Brink F, Posternak JM. Thermodynamic analysis of the relative effectiveness of narcotics. J Cell Comp Physiol. 1948;32:211–233. DOI: 10.1002/jcp.1030320208.
- Ferguson J. The use of chemical potentials as indices of toxicity. Roy. Soc. (London) 1939; B127:387–404.
- Garcés M, Cáceres L, Chiappetta D, Magnani N, Evelson P. Current understanding of nanoparticle toxicity mechanisms and interactions with biological systems. New J Chem. 2021;45(32):14328–14344. DOI: 10.1039/d1nj01415c.
- Abraham MH, Sanchez-Moreno R, Gil-Lostes J, Cometto-Muniz JE, Cain WS. Physicochemical Modeling of Sensory Irritation in Humans and Experimental Animals. In JB Morris, DJ Shusterman (Eds.): Toxicology of the Nose and Upper Airways. New York: Informa Healthcare USA, Inc.; 2010:376–389. DOI: 10.3109/9781420081886.
- Raevsky OA, Grigor’ev VYu, Dearden JC, Weber EE. Classification and Quantification of the Toxicity of Chemicals to Guppy, Fathead Minnow, and Rainbow Trout. Part 2. Polar Narcosis Mode of Action. QSAR Comb Sci. 2009;28(1):1–12. DOI: 10.1002/qsar.200860016.
- Gagnaire F, Azim S, Bonnet P, Simon P, Guenier JP, De Ceaurriz J. Nasal irritation and pulmonary toxicity of aliphatic amines in mice. J Appl Toxicol. 1989;9(5):301–304. DOI: 10.1002/jat.2550090504.
- CRC handbook of chemistry and physics. A ready-reference book of chemical and physical data. Ed. by Haynes WM, Lide DR, Bruno TJ. London: CRC Press, 97th ed.; 2016–2017. 5–88–5–97.
- GESTIS – International Limit Values for Chemical Agents (GESTIS-ILV). Available from: http://www.dguv.de/ifa/gestis/ gestis-internationale-grenzwerte-fuer-chemische-substanzen-limit-values-for-chemical-agents/index-2.jsp.
- Table of IDHL Values. Immediately Dangerous to Life or Health (IDLH) Values. Available from: https://www.cdc.gov/niosh/ idlh/intridl4.html.
- TLV/BEI Guidelines. Available from: https://www.acgih.org/science/tlv-bei-guidelines/.
- Bergfeld WF, Belsito DV, Hill RA, et al. Final Amended Report. On the Safety Assessment of Ethanolamine and Ethanolamine Salts as Used in Cosmetics. Washington: Cosmetic Ingredient Review; 2012. 19 p.
- Hartwig A, MAK Commission, Arand M. Methyldiethanolamin. MAK Collect Occup Health Saf. 2024;9(1):Doc006. DOI: 10.34865/mb10559kskd9_1ad.
- Gad SC. Ethanolamine. In: Wexler W (Ed.) Encyclopedia of Toxicology. Elsevier; 2024;4:413–417. DOI: 10.1016/B978-0-12-824315-2.00559-5.
- Hartwig A, MAK Commission, Arand M. 2-Diethylaminoethanol. MAK Collect Occup Health Saf. 2024;9(3):Doc059. DOI: 10.5167/uzh-269685.
- Hartwig A, MAK Commission. n‐Butylamine, sec‐Butylamine, iso‐Butylamine, tert‐Butylamine. MAK Collect Occup Health Saf. Weinheim: Wiley-VCH; 2019;4(4):1881–1892. DOI: 10.34865/mb0210isme6019_w.
- Araki A, Azuma K, Endo G, et al. Occupational exposure limits for cumene, 2,4-dichlorophenoxy acetic acid, silicon carbide whisker, benzyl alcohol, and methylamine, and carcinogenicity, occupational sensitizer, and reproductive toxicant classifications. J Occup. Health. 2019;61(4):328–330. DOI: 10.1002/1348-9585.12073.
- Hartwig A, MAK Commission, Arand M. Methylamine. MAK Collect Occup Health Saf. 2022;7(2):Doc033. DOI: 10.34865/ mb7489e7_2ad.
- Manieu C, Astuto MC, Cattaneo I. Methylamine. In: Wexler W (Ed.). Encyclopedia of Toxicology, fourth ed. Elsevier; 2024;6:245–250. DOI: 10.1016/B978-0-12-824315-2.00198-6.
- Astuto MC, Cattaneo I, Manieu C. Ethylamine. In: Wexler W (Ed.). Encyclopedia of Toxicology, fourth ed. Elsevier; 2024;4:451–455. DOI: 10.1016/B978-0-12-824315-2.00194-9.
- Safety Assessment of Diisopropanolamine, Triisopropanolamine, Isopropanolamine, and Mixed lsopropanolamines as Used in Cosmetics. Cosmetic Ingredient Review. 2024. 48 p.
- Pamirsky I, Artemenko A, Golokhvast K. Diethylamine. In: Wexler W (Ed.). Encyclopedia of Toxicology, fourth ed. Elsevier; 2024;3:731–737. DOI: 10.1016/B978-0-12-824315-2.00592-3.
- Qiu Z, Li G, An T. In vitro toxic synergistic effects of exogenous pollutants – trimethylamine and its metabolites on human respiratory tract cells. Sci Total Env. 2021;783:146915. DOI: 10.1016/j.scitotenv.2021.146915.
- Buvik V, Vevelstad SJ, Brakstad OG, Knuutila HK. Stability of Structurally Varied Aqueous Amines for CO2 Ind Eng Chem Res. 2021;60(15):5627–5638. DOI: 10.1021/acs.iecr.1c00502.
- Ismagilova A, Kisand V, Vares L. Ecotoxicity risk assessment of amines used in ‘switchable water’ and CO2-capturing processes. Environ Sci Processes Impacts. 2025;27:974–980. DOI: 10.1039/D4EM00657G.
- Vasanthi K. Biodegradable Polymers – A Review. Polym Sci. 2017;3(1). DOI: 10.4172/2471-9935.100022.
- Klymenko NY, Siora IV, Novikova EA, et al. Destruction of hydrocarbons by the composite system based on the nanosilicas and yeast cells mixture in aqueous medium. J Water Chem Technol. 2017;39:209–213. DOI: 10.3103/S1063455X17040051.
- Jadhavpatil V, Undre P, Helambe S. Dielectric Relaxation in Water-Ethanolamine Mixtures as a Function of Composition and Temperature. Integr Ferroelectr. 2019;202(1):112–121. DOI: 10.1080/10584587.2019.1674829.
- Lane JR, Schrøder SD, Saunders GC, Kjaergaad HG. Intramolecular hydrogen bonding in substituted aminoalcohols. J Phys Chem A. 2016;120(32):6371–6378. DOI: 10.1021/acs.jpca.6b05898.
- François MHJ-J, Buvik V, Vernstad K, Knuutila HK. Assessment of the volatility of amine degradation compounds in aqueous MEA and blend of 1-(2HE)PRLD and 3A1P. Carbon Capture Sci Technol. 2024;13:100326. DOI: 10.1016/ j.ccst.2024.100326.
