N 4 (195) 2025. P. 97–103

ALKYLAMINES CHEMICAL-TOXICOLOGICAL PROPERTIES – ACID GASES CHEMOSORBENTS. INHALATION TOXICITY

Odesa I. I. Mechnikov National University, Odesa, Ukraine
Odesa National Medical University, Odesa, Ukraine
Dnipro University of Technology, Dnipro, Ukraine

DOI 10.32782/2226-2008-2025-4-16

Introduction. To ensure protection of the human body from the effects of toxic, dangerous chemicals, means of individual and collective protection agents are produced within the framework of tactical medicine technologies. Organic amines are widely used as chemosorbents in the composition of anti-gas elements of the above-mentioned agents.

A review of experimental material devoted to this topic was conducted on open scientometric databases Scopus, Web of Science, Science Direct (Elsevier), Google Scholar, PubMed, etc., and analyzes such toxicity indicators as LC0, LC50, LOAEL, NOAEL, RD50, Rfc, TLV, MPC. Results. The toxicity of volatile organic compounds is conventionally divided into specific (reactive, chemical), which is the result of irreversible covalent interaction of its reactive groups with bioreceptors, and nonspecific (nonreactive, physical), which is associated with the interaction with bioreceptors of the so-called “inert” compounds and includes all types of reversible weak non-covalent interactions. Important parameters of the nonspecific toxicity of an organic compound are its saturated vapor pressure and lipophilicity. It is noted that the study of inhalation toxicity is more difficult than other types of toxicological studies due to the technical requirements for the creation and characterization of the exposure atmosphere, as well as the determination of the dose delivered to the respiratory tract. The features of determining toxicity in the series of volatile organic amines are considered and difficulties in comparing them are noted due to the discrepancy between the legislation of different countries regarding hygienic standards, which differ by tens of times. Inhalation toxicity of volatile amines is reduced by introducing polar hydroxyl groups into them, increasing the ability of amines to intermolecular interaction or by creating polymers or copolymers on their basis, in particular impregnated fibrous materials, the biodegradation of which is facilitated by the use of artificial natural or synthetic fibers.

It is noted that the determination of the structure-toxicity relationship (in particular, inhalation) for amines requires further research under comparable conditions.

Keywords: inhalation toxicity, specific toxicity, alkylamines, lipophilicity, correlations.

REFERENCES

  1. Ennan AA, Khoma RE. Impregnated fibrous chemosorbents of acid gases for respiratory purpose [Imprehnovani voloknysti khemosorbenty kyslykh haziv respiratornoho pryznachennia] Visn Odes nac univ, Him. 2017;22(6):751–760 (in Ukrainian).
  2. Khoma RE. Acid-base interaction and sulfooxidation at chemosorption of sulfur dioxide by alkylamines aqueous solutions. Thesis of Doctor’s degree dissertation, 02.00.01. Kyiv; 2019. 427 p. (in Ukrainian).
  3. Ennan AA-A, Dlubovskii RM, Khoma RE. Water role in the gases chemosorporation processes by sorption-active materials [Rol vody u protsesakh khemosorbtsii haziv sorbtsiino-aktyvnymy materialamy]. Visn Odes nac univ, Him. 2021;26(3): 6–26. DOI: 10.18524/2304-0947.2021.3(79).240717 (in Ukrainian).
  4. Ennan AA-A, Dlubovskii RM, Khoma RE. Non-woven ion-exchange fibrous materials in air sanitary cleaning. Ukr Chem 2021;87(7):11–32. DOI: 10.33609/2708-129x.87.07.2021.3-24.
  5. Ennan AA-A, Khoma R, Dlubovskii RM, Zakharenko YS, Benkovska T, Knysh IM. Mono- ta bifunktsionalni imprehnovani voloknysti khemosorbenty respiratornoho pryznachennia [Mono- and bifunctional impregnated fiber chemosorbents for respiratory purpose]. Visn Odes nac univ, Him. 2022;27(1):5–30. DOI: 10.18524/2304-0947.2022.1(81).248297.
  6. Wang D, Xie J, Li G, et al. Multiobjective Evaluation of Amine-Based Absorbents for SO2 Capture Process Using the pKa Mathematical Model. ACS Omega. 2022;7(3):2897–2907. DOI: 10.1021/acsomega.1c05766.
  7. Kim K, Lim H, Park HS, Kang JH, Park J, Song H. Capture of Sulfur Dioxide in Ship Exhaust Gas by Tertiary Amine Absorbents. Chem Eng Techn. 2024;47(10):e202300328. DOI: 10.1002/ceat.202300328.
  8. Gupta PK. Problem Solving Questions in Toxicology. Springer, Cham; 2020. 346 p. DOI: 10.1007/978-3-030-50409-0.
  9. de Wolf W, Lieder PH, Walker JD. Application of QSARs: Correlation of Acute Toxicity in the Rat Following Oral or Inhalation Exposure. QSAR Comb Sci. 2004;23(7):521–525. DOI: 10.1002/qsar.200430861.
  10. Raevsky OA, Modina EA, Raevskaya OE. QSAR models of the inhalation toxicity of organic compounds. Pharm Chem J. 2011;45:165–169. DOI: 10.1007/s11094-011-0585-z.
  11. Rusin A, Stolecka K. An Analysis of Hazards Caused by Emissions of Amines from Carbon Dioxide Capture Installations. Pol J Environ Stud. 2016;25(3):909–916.
  12. Svendsen C, Låg M, Lindeman B, Andreassen M, Granum B. New knowledge on health effects of amines and their derivatives associated with CO2 2023. NIPH. 24 p.
  13. Iwasaki M, Tsugane S. Dietary heterocyclic aromatic amine intake and cancer risk: epidemiological evidence from Japanese studies. Genes Env. 2021;23:33. DOI: 10.1186/s41021-021-00202-5.
  14. Gheni SA, Ali MM, Ta GC, Harbin HJ, Awad SA. Toxicity, Hazards, and Safe Handling of Primary Aromatic Amines. ACS Chem Health Saf. 2024;31(1):8–21. DOI: 10.1021/acs.chas.3c00073.
  15. Bakand S. Cell culture techniques essential for toxicity testing of inhaled materials and nanomaterials in vitro. J Tissue Sci Eng. 2016;7(3):1000181-1–1000181-5.
  16. Pauluhn J. Derivation of thresholds for inhaled chemically reactive irritants: Searching for substance-specific common denominators for read-across prediction. Regul Toxicol Pharm. 2022;130:105131. DOI: 10.1016/j.yrtph.2022.105131.
  17. Wang X, Liu W, Duan H, Fang P, Zhang N, Zhou X. Study on quantitative structure-biodegradability relationships of amine collectors by GFA-ANN method. J Hazard Mater. 2021;415:125628. DOI: 10.1016/j.jhazmat.2021.125628.
  18. Haney JT, McCant D, Honeycutt ME, Lange S. Development of an inhalation reference concentration for diethanolamine. Regul Toxicol. Pharmacol. 2018;92:55–66. DOI: 10.1016/j.yrtph.2017.11.011.
  19. Gamer AO, Rossbacher R, Kaufmann W, van Ravenzwaay B. The Inhalation toxicity of di- and triethanolamine upon repeated exposure. Food Chem. Toxicol. 2008;46(6):2173–2183.
  20. Tualeka AR, Jalaludin J. Observation of Adverse Effect on Level Ammonia through Expression of CD8 Lymphocyte in Mice. Malaysian J Med Health Sci. 2018;14(SP2):71–77.
  21. Lathouri M, Korre A, Dusinska M, Durucan S. Human Health hazard assessment strategy for amine emissions around PCC facilities. 2022. 67 p.
  22. Hartwig A, MAK Commission, Arand M. N′-(3-Aminopropyl)-N′-dodecylpropane-1,3-diamine. The MAK Collection for Occupational Health and Safety. 2023;8(1):1–20. DOI: 10.34865/mb237282e8_1or.
  23. Piccardo MT, Geretto M, Pulliero A, Izzotti A. Odor emissions: A public health concern for health risk perception. Res. 2022;204:An 112121.
  24. TLV Chemical Substances Introduction. Available from: https://acgih.org/science/tlv-bei-guidelines/tlv-chemical- substances-introduction/.
  25. Jang J-K. Amines as occupational hazards for visual disturbance. Health. 2016;54(2):101–115. DOI: 10.2486/ind-health.2015-0071.
  26. Mozaffari S, Valipour F, Jalilian ZH, Yavar A. Quantitative risk analysis and control measure evaluation for workplace exposure to aliphatic amines: A case study in the foundry sector. Arch. Health Sci. 2024;11(3):160–166. DOI: 10.48307/ iahsj.2024.411438.1043.
  27. Order of Ministry of Health of Ukraine No. 813. 10.05.2024. Derzhavni medyko-sanitarni normatyvy “Hranychno dopustymi kontsentratsii khimichnykh i biolohichnykh rechovyn v atmosfernomu povitri naselenykh mists” [State medical and sanitary standards “Maximum permissible concentrations of chemical and biological substances in the atmospheric air of populated areas”] (in Ukrainian). Available from: https://zakon.rada.gov.ua/laws/show/en/z0763-24?lang=uk#Text.
  28. Alarie Y. Toxicological evaluation of airborne chemical irritation allergens using respiratory reflex reactions. In BJK Leong (Ed.), Proceedings of the International Toxicology and Technology Symposium. Ann Arbor Science Publications, Ann Arbor; 1981:207–231.
  29. Ballantyne B. Peripheral Chemosensory Irritation: Fundamentals, Investigation and Applied Considerations. In General, Applied and Systems Toxicology. John Wiley & Sons; 2009. 32 p. DOI: 10.1002/9780470744307.gat060.
  30. Escher BI, Glauch L, Konig M, Mayer P, Schlichting R. Baseline Toxicity and Volatility Cutoff in Reporter Gene Assays Usedfor High-Throughput Screening. Res. Toxicol. 2019;32(8):1646−1655. DOI: 10.1021/acs.chemrestox.9b00182.
  31. Alarie Y, Schaper M, Nielsen GD, Abraham MH. Structure-activity relationships of volatile organic chemicals as sensory irritants. Arch Toxicol. 1998;72(3):125–140. DOI: 10.1007/s002040050479.
  32. Brink F, Posternak JM. Thermodynamic analysis of the relative effectiveness of narcotics. J Cell Comp Physiol. 1948;32:211–233. DOI: 10.1002/jcp.1030320208.
  33. Ferguson J. The use of chemical potentials as indices of toxicity. Roy. Soc. (London) 1939; B127:387–404.
  34. Garcés M, Cáceres L, Chiappetta D, Magnani N, Evelson P. Current understanding of nanoparticle toxicity mechanisms and interactions with biological systems. New J Chem. 2021;45(32):14328–14344. DOI: 10.1039/d1nj01415c.
  35. Abraham MH, Sanchez-Moreno R, Gil-Lostes J, Cometto-Muniz JE, Cain WS. Physicochemical Modeling of Sensory Irritation in Humans and Experimental Animals. In JB Morris, DJ Shusterman (Eds.): Toxicology of the Nose and Upper Airways. New York: Informa Healthcare USA, Inc.; 2010:376–389. DOI: 10.3109/9781420081886.
  36. Raevsky OA, Grigor’ev VYu, Dearden JC, Weber EE. Classification and Quantification of the Toxicity of Chemicals to Guppy, Fathead Minnow, and Rainbow Trout. Part 2. Polar Narcosis Mode of Action. QSAR Comb Sci. 2009;28(1):1–12. DOI: 10.1002/qsar.200860016.
  37. Gagnaire F, Azim S, Bonnet P, Simon P, Guenier JP, De Ceaurriz J. Nasal irritation and pulmonary toxicity of aliphatic amines in mice. J Appl Toxicol. 1989;9(5):301–304. DOI: 10.1002/jat.2550090504.
  38. CRC handbook of chemistry and physics. A ready-reference book of chemical and physical data. Ed. by Haynes WM, Lide DR, Bruno TJ. London: CRC Press, 97th ed.; 2016–2017. 5–88–5–97.
  39. GESTIS – International Limit Values for Chemical Agents (GESTIS-ILV). Available from: http://www.dguv.de/ifa/gestis/ gestis-internationale-grenzwerte-fuer-chemische-substanzen-limit-values-for-chemical-agents/index-2.jsp.
  40. Table of IDHL Values. Immediately Dangerous to Life or Health (IDLH) Values. Available from: https://www.cdc.gov/niosh/ idlh/intridl4.html.
  41. TLV/BEI Guidelines. Available from: https://www.acgih.org/science/tlv-bei-guidelines/.
  42. Bergfeld WF, Belsito DV, Hill RA, et al. Final Amended Report. On the Safety Assessment of Ethanolamine and Ethanolamine Salts as Used in Cosmetics. Washington: Cosmetic Ingredient Review; 2012. 19 p.
  43. Hartwig A, MAK Commission, Arand M. Methyldiethanolamin. MAK Collect Occup Health Saf. 2024;9(1):Doc006. DOI: 10.34865/mb10559kskd9_1ad.
  44. Gad SC. Ethanolamine. In: Wexler W (Ed.) Encyclopedia of Toxicology. Elsevier; 2024;4:413–417. DOI: 10.1016/B978-0-12-824315-2.00559-5.
  45. Hartwig A, MAK Commission, Arand M. 2-Diethylaminoethanol. MAK Collect Occup Health Saf. 2024;9(3):Doc059. DOI: 10.5167/uzh-269685.
  46. Hartwig A, MAK Commission. n‐Butylamine, sec‐Butylamine, iso‐Butylamine, tert‐Butylamine. MAK Collect Occup Health Saf. Weinheim: Wiley-VCH; 2019;4(4):1881–1892. DOI: 10.34865/mb0210isme6019_w.
  47. Araki A, Azuma K, Endo G, et al. Occupational exposure limits for cumene, 2,4-dichlorophenoxy acetic acid, silicon carbide whisker, benzyl alcohol, and methylamine, and carcinogenicity, occupational sensitizer, and reproductive toxicant classifications. J Occup. Health. 2019;61(4):328–330. DOI: 10.1002/1348-9585.12073.
  48. Hartwig A, MAK Commission, Arand M. Methylamine. MAK Collect Occup Health Saf. 2022;7(2):Doc033. DOI: 10.34865/ mb7489e7_2ad.
  49. Manieu C, Astuto MC, Cattaneo I. Methylamine. In: Wexler W (Ed.). Encyclopedia of Toxicology, fourth ed. Elsevier; 2024;6:245–250. DOI: 10.1016/B978-0-12-824315-2.00198-6.
  50. Astuto MC, Cattaneo I, Manieu C. Ethylamine. In: Wexler W (Ed.). Encyclopedia of Toxicology, fourth ed. Elsevier; 2024;4:451–455. DOI: 10.1016/B978-0-12-824315-2.00194-9.
  51. Safety Assessment of Diisopropanolamine, Triisopropanolamine, Isopropanolamine, and Mixed lsopropanolamines as Used in Cosmetics. Cosmetic Ingredient Review. 2024. 48 p.
  52. Pamirsky I, Artemenko A, Golokhvast K. Diethylamine. In: Wexler W (Ed.). Encyclopedia of Toxicology, fourth ed. Elsevier; 2024;3:731–737. DOI: 10.1016/B978-0-12-824315-2.00592-3.
  53. Qiu Z, Li G, An T. In vitro toxic synergistic effects of exogenous pollutants – trimethylamine and its metabolites on human respiratory tract cells. Sci Total Env. 2021;783:146915. DOI: 10.1016/j.scitotenv.2021.146915.
  54. Buvik V, Vevelstad SJ, Brakstad OG, Knuutila HK. Stability of Structurally Varied Aqueous Amines for CO2 Ind Eng Chem Res. 2021;60(15):5627–5638. DOI: 10.1021/acs.iecr.1c00502.
  55. Ismagilova A, Kisand V, Vares L. Ecotoxicity risk assessment of amines used in ‘switchable water’ and CO2-capturing processes. Environ Sci Processes Impacts. 2025;27:974–980. DOI: 10.1039/D4EM00657G.
  56. Vasanthi K. Biodegradable Polymers – A Review. Polym Sci. 2017;3(1). DOI: 10.4172/2471-9935.100022.
  57. Klymenko NY, Siora IV, Novikova EA, et al. Destruction of hydrocarbons by the composite system based on the nanosilicas and yeast cells mixture in aqueous medium. J Water Chem Technol. 2017;39:209–213. DOI: 10.3103/S1063455X17040051.
  58. Jadhavpatil V, Undre P, Helambe S. Dielectric Relaxation in Water-Ethanolamine Mixtures as a Function of Composition and Temperature. Integr Ferroelectr. 2019;202(1):112–121. DOI: 10.1080/10584587.2019.1674829.
  59. Lane JR, Schrøder SD, Saunders GC, Kjaergaad HG. Intramolecular hydrogen bonding in substituted aminoalcohols. J Phys Chem A. 2016;120(32):6371–6378. DOI: 10.1021/acs.jpca.6b05898.
  60. François MHJ-J, Buvik V, Vernstad K, Knuutila HK. Assessment of the volatility of amine degradation compounds in aqueous MEA and blend of 1-(2HE)PRLD and 3A1P. Carbon Capture Sci Technol. 2024;13:100326. DOI: 10.1016/ j.ccst.2024.100326.