N 4 (189) 2024. P. 40–45

THE LEVEL OF MOLECULAR MARKERS ACTIVITY ON PERIPHERAL BLOOD LYMPHOCYTES IN PATIENTS WITH OPTIC NEURITIS

SI “The Filatov Institute of Eye Diseases and Tissue Therapy of the National Academy of Medical Sciences of Ukraine”, Odesa, Ukraine

Odesa National Medical University, Odesa, Ukraine

DOI 10.32782/2226-2008-2024-4-7

Optic neuritis (ON) is one of the frequent causes of acute damage to the optic nerve.

The research aims to determine the activation of molecular markers ICAM-1 (CD54), CD5, CD25, CD95 levels on the peripheral blood lymphocytes in patients with ON and its complications.

Materials and methods. Examinations were carried out: 1 group – 16 patients (22 eyes) with idiopathic ON (papillitis). The duration of the disease from the first symptoms to diagnosis with this examination was no more than 30 days. Group 2 – 8 patients (14 eyes) with partial atrophy of the optic nerve (PAON) as a result of ON. The duration of the disease from the first symptoms to the diagnosis ranged from 180 to 1825 days. Indicators of the molecular activation markers on CD3+ lymphocytes were determined using monoclonal antibodies by immunofluorescence method.

Results: In ON and PAON groups, the number of CD3+ lymphocytes with the expression of the pro-inflammatory marker ICAM-1 (CD54) 3.4–6.3 times exceeds the norm; the expression of the marker CD25 early activation 1.9–4.6 times exceeds the norm; with the expression of the autoimmune action marker CD5 2.2–4.9 times exceeds the norm; the expression of the apoptosis marker CD95 2.4–5.1 times exceeds the norm. The expression of ICAM-1 (CD54), CD5, CD25 and CD95 markers correlates directly with the cell immunity indicators CD4+, CD8+, CD16+ and also with the level of B-lymphocytes (CD19+) as an indicator of humoral immunity.

Conclusions: the level of expression of activation markers on peripheral blood lymphocytes in patients with ON and PAON was determined: the level of molecular markers of lymphocyte activation CD54, CD5, CD25, CD95 significantly exceeds the norm – 1.9–6.3 times. The expression of these markers correlates directly with the cell and humoral immunity. This determines the active participation of the markers in the immune response in ON and in its pathogenesis.

Key words: optic neuritis, partial atrophy of the optic nerve, cellular and humoral immunity, markers of lymphocyte activation.

REFERENCES

  1. Braithwaite T, Subramanian A, Petzold A, et al. Trends in Optic Neuritis Incidence and Prevalence in the UK and Association With Systemic and Neurologic Disease. JAMA Neurol. 2020;77(12):1514-1523. doi: 10.1001/jamaneurol.2020.3502.
  2. Gospe SM, Chen JJ, Bhatti MT. Neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein associated disorder-optic neuritis: a comprehensive review of diagnosis and treatment. Eye (Lond). 2021; 35 (3):753-68. doi: 10.1038/ s41433-020-01334-8.
  3. Saitakis G, Chwalisz BK. Treatment and Relapse Prevention of Typical and Atypical Optic Neuritis. Int J Mol Sci. 2022; 23(17):9769. doi: 10.3390/ijms23179769
  4. Hickman SJ, Petzold A. Update on Optic Neuritis: An International View. 2021;46(1):1-18.doi: 10.1080/01658107.2021.1964541.
  5. Chen JJ, Pittock SJ, Flanagan EP, Lennon VA, Bhatti MT. Optic neuritis in the era of biomarkers. SurvOphthalmol. 2020;65(1):12-7. doi: 10.1016/j.survophthal.2019.08.001.
  6. Hassan MB, Stern C, Flanagan EP, et al. Population-Based Incidence of Optic Neuritis in the Era of Aquaporin-4 and Myelin Oligodendrocyte Glycoprotein Antibodies. Am J Ophthalmol. 2020;220:110-4. doi: 10.1016/j.ajo.2020.07.014.
  7. Chwalisz BK. Chronic relapsing inflammatory optic neuropathy (CRION). ArqNeuropsiquiatr. 2022;80(5):453-4. doi: 10.1590/0004-282X-ANP-2022-E005.
  8. Bennett JL. Optic Neuritis. Continuum (MinneapMinn). 2019;25(5):1236-1264. doi: 10.1212/CON.0000000000000768.
  9. Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Brück W. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. 2000; 123 (Pt 6):1174-83. doi: 10.1093/brain/123.6.1174.
  10. Matsegora Nina, Kaprosh Antonina, Antonenko Petro. The impact of IgG administration on the cellular immunity status in the patients with multidrug resistant tuberculosis/ HIV with CD4 + lymphocyte cells below 50 cells/μL. International Journal of Mycobacteriology. 2021; 10(2):122-128. DOI10.4103/ijmy.ijmy_21_21
  11. Matsegora Nina, Kaprosh Antonina, Antonenko Petro. Biochemical value dynamics in patients with multidrug-resistant tuberculosis/HIV with CD4+ lymphocyte cells below 50 cells/μCL and its variability in the application of adjuvant immunoglobulin therapy. International Journal of Mycobacteriology. 2020; 8(4):374-380. DOI10.4103/ijmy.ijmy_122_19
  12. Feldman A, Gurevich M, Huna-Baron R, Achiron A. The role of B cells in the early onset of the first demyelinating event of acute optic neuritis. Invest Ophthalmol Vis Sci. 2015; 56(2):1349-56.doi: 10.1167/iovs.14-15408.
  13. Khramenko NI, Konovalova NV, Usov VY, Velychko LM, Bogdanova OV. Immunity status and expression of molecular markers (ICAM-1, CD5, CD25, CD95) on lymphocytes of patients with recurrent anterior uveitis complicated by macular edema. Graefes Arch Clin Exp Ophthalmol. 2023;261(5):1423-1431. doi: 10.1007/s00417-022-05938-6.
  14. Haydinger CD, Ashander LM, Tan ACR, Smith JR. Intercellular Adhesion Molecule 1: More than a Leukocyte Adhesion Molecule. Biology(Basel). 2023;12(5):743. doi: 10.3390/biology12050743.
  15. Burgueño-Bucio E, Mier-Aguilar CA, Soldevila G. The multiple faces of CD5. J Leukoc Biol. 2019;105(5):891-904. doi: 10.1002/JLB. MR0618-226R.
  16. Luo H, Zhu Y, Guo B, Ruan Z, Liu Z, Fan Z, Zhao S. Causal relationships between CD25 on immune cells and hip osteoarthritis. Front Immunol. 2023;14:1247710. doi: 10.3389/fimmu.2023.1247710
  17. Seyrek K, Ivanisenko NV, Wohlfromm F, Espe J, Lavrik IN. Impact of human CD95 mutations on cell death and autoimmunity: a model. Trends Immunol. 2022;43(1):22-40. doi: 10.1016/j.it.2021.11.006.
  18. Jonzzon S, Suleiman L, Yousef A, et al. Clinical Features and Outcomes of Pediatric Monophasic and Recurrent Idiopathic Optic Neuritis. J ChildNeurol. 2020;35(1):77-83. doi: 10.1177/0883073819877334.
  19. Hluzman DF, Sklyarenko LM, Nahorna VA, Kryachok IA. Diahnostychnaimunotsytokhimiyapukhlyn. Kyiv: Morion, 2003. S. 6-15.
  20. Lewczuk P, Reiber H, Tumani H. Intercellular adhesion molecule-1 in cerebrospinal fluid – the evaluation of blood-derived and brain-derived fractions in neurological diseases. J Neuroimmunol. 1998;87(1-2):156-61. doi: 10.1016/ s0165-5728(98)00084-8
  21. Chang BL, Ro LS, Chen CM, et al. Serum levels of cell adhesion molecules in patients with neuromyelitis optica spectrum disorder. Ann Clin Transl Neurol. 2020;7(10):1854-1861. doi: 10.1002/acn3.51167.
  22. Lundqvist S, Modvig S, Fischer EA, Frederiksen JL, Degn M. Frequency and immunophenotype of IL10-producing regulatory B cells in optic neuritis. 2019;156(3):259-269. doi: 10.1111/imm.13024.
  23. Tran GT, Hodgkinson SJ, Carter NM, et al. IL-5 promotes induction of antigen-specific CD4+CD25+ T regulatory cells that suppress autoimmunity. Blood. 2012;119(19):4441-50. doi: 10.1182/blood-2011-12-396101.