N 3 (184) 2023. P. 63–68

MEDICAL PROTECTION OF THE POPULATION AND THE MILITARY AT THE THREAT OF RADIOACTIVE CONTAMINATION

Military Medical Clinical Center of the Southern Region, Odesa, Ukraine
Odesa National Medical University, Odesa, Ukraine

DOI 10.32782/2226-2008-2023-3-12

The article provides data on providing the military and the population with an algorithm for prevention and treatment in the event of a nuclear disaster during the Ukrainian-Russian war. The highlighted data is based on the analysis of normative and legal documents, scientific publications and sources of state mass media. An algorithm of actions during a nuclear disaster and methods of diagnosis and treatment of consequences on the human body were proposed. An analysis of promising medicinal products was also carried out both for the prevention of exposure and for the treatment of its destructive consequences.

Key words: radiation pollution, ionizing radiation, nuclear disaster, medical protection.

REFERENCES

  1. Putin’s nuclear threats to Ukraine. What can be the Kremlin’s trigger? URL: https://www.radiosvoboda.org/a/novyny-pryazovya-putin-yadernyy-udar-rosiya-ukrayina/32058932.html (in Ukrainian).
  2. Nuclear weapons and the probability of their use: a military expert spoke about the consequences of a nuclear war. URL: https://suspilne.media/245561-aderna-zbroa-ta-jmovirnist-ii-zastosuvanna-vijskovij-ekspert-rozpoviv-pro-naslidki-adernoi-vijni/ (in Ukrainian).
  3. Site on nuclear safety, radiation protection and non-proliferation of nuclear weapons. URL: https://www.uatom.org/zagalni- vidomosti (in Ukrainian).
  4. The undermining of the dam of the Kakhovskaya HPP by the Russians poses a threat to the Zaporizhzhya NPP, – Energoatom. URL: https://lb.ua/society/2023/06/06/559033_pidriv_rosiyanami_dambi_kahovskoi.html (in Ukrainian).
  5. IAEA: There is no threat to nuclear safety at the Zaporizhia NPP. URL: https://www.ukrinform.ua/rubric-economy/3718816- magate-zagrozi-adernij-bezpeci-na-zaporizkij-aes-nemae.html (in Ukrainian).
  6. Budanov – about the threat of undermining the ZNPP: The situation has never been as serious as it is now. URL: https://www. ukrinform.ua/rubric-ato/3727559-budanov-pro-zagrozu-pidrivu-zaes-nikoli-situacia-ne-bula-takou-serjoznou-ak-zaraz. html (in Ukrainian).
  7. President of Ukraine Volodymyr Zelensky Official Internet representation. URL: https://www.president.gov.ua/news/rosiya- mozhe-vlashtuvati-terakt-na-zaes-shob-zalyakati-svit-83993 (in Ukrainian).
  8. Educational and methodological manual for classroom and extracurricular work of students of the 5th year. Zaporizhzhia : ZDMU, 2017. 63 p.
  9. MSD GUIDE version for professionals. Radiation exposure and contamination. URL: https://www.msdmanuals.com/ uk-ua/professional/injuries-poisoning/radiation-exposure-and-contamination/radiation-exposure-and-contamination (in Ukrainian).
  10. Ukrainian hydrometeorological center of the State Emergency Service of Ukraine. Safety alphabet. URL: https://www. meteo.gov.ua/ua/Abetka-bezpeki (in Ukrainian).
  11. Dyachenko V.V., Osodlo G.V., Petrusha O.O. Methodological recommendations for diagnosis, sorting, treatment and prevention of radiation damage. 2022. VP 7-35 (03) 36.01. 16 p.
  12. On the approval of the Regulation on iodine prophylaxis in the event of a radiation accident of the Ministry of Health of Ukraine; Order, Regulation dated 09.03.2021 № 408.
  13. Nauman J., Wolff J. Iodide prophylaxis in Poland after the Chernobyl reactor accident: Benefits and risks. Am J Med. 1993; 94: 524–532.
  14. Gorbunov N.V., Kiang J.G. Brain Damage and Patterns of Neurovascular Disorder after Ionizing Irradiation. Complications in Radiotherapy and Radiation Combined Injury. Radiat Res. 2021; 1: 196 (1): 1–16. DOI: 10.1667/RADE-20-00147.1.
  15. Skrzypek M., Wdowiak A., Panasiuk L., Stec M., Szczygieł K., Zybała M., Filip M. Effect of ionizing radiation on the female reproductive system. Ann Agric Environ Med. 2019; Dec 19; 26 (4): 606–616. DOI: 10.26444/aaem/112837.
  16. Khadzhidekova V., Shishkova R., Khadzhidekov V. Effects of ionizing radiation on the embryo and fetus. Akush Ginekol (Sofiia). 2001; 41 (1): 24–8.
  17. Trowers E., Thomas C.Jr., Silverstein F.E. Chemical- and radiation-induced esophageal injury. Gastrointest Endosc Clin N Am. 1994; Oct 4 (4): 657–75.
  18. Hanania A.N., Mainwaring W., Ghebre Y.T., Hanania N.A., Ludwig M. Radiation-Induced Lung Injury: Assessment and Management. Chest. 2019; 156 (1): 150–162. DOI: 10.1016/j.chest.2019.03.033.
  19. Li L., Tian T., Zhang X. The impact of radiation on the development of lung cancer. J Theor Biol. 2017; Sep 7; 428: 147–152. DOI: 10.1016/j.jtbi.2017.06.020.
  20. Hammer G.P., Scheidemann-Wesp U., Samkange-Zeeb F., Wicke H., Neriishi K., Blettner M. Occupational exposure to low doses of ionizing radiation and cataract development: a systematic literature review and perspectives on future studies. Radiat Environ Biophys. 2013; Aug; 52 (3): 303–19. DOI: 10.1007/s00411-013-0477-6.
  21. Bakar A.A.A., Mohamad N.S., Mahmud M.H., Razak H.R.A., Sudin A.E.L.T., Shuib S. Systematic Review on Multilevel Analysis of Radiation Effects on Bone Microarchitecture. Biomed Res Int. 2022; Jun 6; 2022: 9890633. DOI: 10.1155/2022/9890633.
  22. Singh V.K., Hanlon B.K., Santiago P.T., Seed T.M. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part III. Countermeasures under early stages of development along with ‘standard of care’ medicinal and procedures not requiring regulatory approval for use. Int J Radiat Biol. 2017; Sep; 93 (9): 885–906. DOI: 10.1080/09553002.2017.1332440.
  23. Xie L.W., Cai S., Zhao T.S., Li M., Tian Y. Green tea derivative (-)-epigallocatechin-3-gallate (EGCG) confers protection against ionizing radiation-induced intestinal epithelial cell death both in vitro and in vivo. Free Radic Biol Med. 2020; Dec; 161: 175–186. DOI: 10.1016/j.freeradbiomed.2020.10.012.
  24. Li X.H., Fu D., Latif N.H., Mullaney C.P., Ney P.H., Mog S.R., Whitnail M.H., Srinivasan V., Xiao M. Delta-tocotrienol protects mouse and human hematopoietic progenitors from gamma-irradiation through extracellular signal-regulated kinase/ mammalian target of rapamycin signaling. Haematologica. 2010; 95: 1996–2004.
  25. Satyamitra M., Kulkarni S., Ghosh S.P., Mullaney C., Condliffe D., Srinivasan V. Hematopoietic recovery and amelioration of radiation-induced lethality by the vitamin E isoform, delta-tocotrienol. Radiat Res. 2011; 175: 736–745.
  26. Li X.H., Ghosh S.P., Ha C.T., Fu D., Elliott T.B., Bolduc D.L., Villa V., Whitnall M.H., Landauer M.R., Xiao M. Delta-tocotrienol protects mice from radiation-induced gastrointestinal injury. Radiat Res. 2013; 180: 649–657.
  27. Li X.H., Ha C.T., Fu D., Landauer M.R., Ghosh S.P., Xiao M. Deltatocotrienol suppresses radiation-induced microRNA-30 and protects mice and human CD34þ cells from radiation injury. PLoS One. 2015; 10: e0122258.
  28. Fan S., Meng Q., Xu J., Jiao Y., Zhao L., Zhang X., Sarkar F.H., Brown M.L., Dritschilo A., Rosen E.M. DIM (3,30-diindolylmethane) confers protection against ionizing radiation by a unique mechanism. Proc Natl Acad Sci USA. 2013; 110: 18650–18655.
  29. Lu L., Dong J., Li D., Zhang J., Fan S. 3,3-diindolylmethane mitigates total body irradiation-induced hematopoietic injury in mice. Free Radic Biol Med. 2016; 99: 463–471.
  30. Futran N.D., Trotti A., Gwede C. Pentoxifylline in the Treatment of Radiation-Related Soft Tissue Injury: Preliminary Observations. The Laryngoscope, 1997; 107: 391–395. DOI: 10.1097/00005537-199703000-00022.
  31. Ozturk B., Egehan I., Atavci S., Kitapci M. Pentoxifylline in prevention of radiation-induced lung toxicity in patients with breast and lung cancer: a double-blind randomized trial. Int J Radiat Oncol Biol Phys. 2004; 58: 213–219.
  32. Fahl W.E., Cadarso M., Goesch T.R. Significant Reduction of Total-Body Irradiation-Induced Death in Mice Treated with PrC-210 24 Hours Postirradiation. Radiat Res. 2022; Sep 1; 198 (3): 263–270. DOI: 10.1667/RADE-22-00036.1.
  33. Gupta P., Gayen M., Smith J.T., Gaidamakova E.K., Matrosova V.Y., Grichenko O., Knollmann-Ritschel B., Daly M.J., Kiang J.G., Maheshwari R.K. MDP: A Deinococcus Mn2+-Decapeptide Complex Protects Mice from Ionizing Radiation. PLoS One. 2016; Aug 8; 11(8): e0160575. DOI: 10.1371/journal.pone.0160575.
  34. Gaidamakova E.K., Myles I.A., McDaniel D.P., Fowler C.J., Valdez P.A., Naik S., Gayen M., Gupta P., Sharma A., Glass P.J., et al. Preserving immunogenicity of lethally irradiated viral and bacterial vaccine epitopes using a radio-protective Mn2þ-Peptide complex from Deinococcus. Cell Host Microbe. 2012; 12: 117–124.