N 2 (183) 2023. P. 98–103

CORONAVIRUS DISEASE: IMPACT ON RISK AND CLINICAL COURSE OF CARDIOVASCULAR DISEASES

Odesa National Medical University, Odesa, Ukraine

DOI 10.32782/2226-2008-2023-2-18

The risk of cardiovascular complications and changing clinical course of cardiovascular diseases are the most important consequences coronavirus disease pandemic (COVID-19).

Purpose of the review. To improve the awareness of scientist and practitioners regarding the coronavirus disease cardiovascular consequences.

Results. The analyses of data presented in PubMed, Scopus, Google Scholar by cay wards “COVID-19”, “SARS-CoV-2”, “cardiovascular disaeses”, “myocardial injury”, 2020-2023. Increased risk of develop coronary heart disease, myocarditis, pericarditis, heart rhythm disorders, heart failure, thromboembolic complications was registered in patients both in the acute phase, and at 12 months after recovery. Cardiovascular history in the patients is associated with a more severe COVID-19 course, more frequent emergency unit admit, poor prognosis, increase mortality risk.

Conclusion. The impact of coronavirus disease on risk and clinical course of cardiovascular diseases is inherent not only in the acute period, but also persist in post-covid period. It characterized by a deterioration patients’ health, and requires careful medical supervision to prevent life-threatening complications.

Key words: COVID-19, cardiovascular diseases, risk of cardiovascular complications.

REFERENCES

  1. Chen C, Haupert SR, Zimmermann L, Shi X, Fritsche LG, Mukherjee B. Global Prevalence of Post-Coronavirus Disease 2019 (COVID-19) Condition or Long COVID: A Meta-Analysis and Systematic Review. J Infect Dis. 2022;226(9):1593-1607. doi: 10.1093/infdis/jiac136. PMID: 35429399; PMCID: PMC9047189.
  2. Suvvari TK, Kutikuppala LVS., Tsagkaris C, Corriero AC, Kandi V. Post-COVID-19 complications: Multisystemic approach. Journal of medical virology. 2021;93(12): 6451–6455. https://doi.org/10.1002/jmv.27222
  3. Matsumoto C, Shibata S, Kishi T, et al. Long COVID and hypertension-related disorders: a report from the Japanese Society of Hypertension Project Team on COVID-19. Hypertension Research. 2023; 46: 601-619. https://doi.org/10.1038/s41440-022-01145-2.
  4. Davis HE, Assaf GS, McCorkell L, et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine. 2021; 38:101019https://doi: 10.1016/j.eclinm.2021.101019.
  5. Maestre-Muñiz MM, Arias Á, Mata-Vázquez E, et al. Long-Term Outcomes of Patients with Coronavirus Disease 2019 at One Year after Hospital Discharge. J Clin Med. 2021 Jun 30;10(13):2945. doi: 10.3390/jcm10132945. PMID: 34209085; PMCID: PMC8269002.
  6. Ikonomidis I, Lambadiari V, Mitrakou A, et al. Myocardial work and vascular dysfunction are partially improved at 12 months after COVID-19 infection. Eur J Heart Fail. 2022; 24(4):727–729. https:// doi: 10.1002/ejhf.2451. Epub 2022 Feb 20. PMID: 35138689; PMCID: PMC9087421.
  7. Raman B, Bluemke DA, Lüscher TF, Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022;43 (11):1157–1172. https://doi: 10.1093/eurheartj/ehac031.
  8. Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022; 28(3):583–590. https://doi: 10.1038/s41591-022-01689-3.
  9. Wang W, Wang CY, Wang SI, Wei JC. Long-term cardiovascular outcomes in COVID-19 survivors among non-vaccinated population: A retrospective cohort study from the TriNetX US collaborative networks. EClinicalMedicine. 2022 Nov; 53:101619. doi:10.1016/j.eclinm.2022.101619. Epub 2022 Aug 11. PMID: 35971425; PMCID: PMC9366236.
  10. Zbitnieva VO, Voloshyna OB, Balashova IV, Lysyi IS. Incidence of cardiac arrhythmias in patients with COVID-19 infection according to 24-hour electrocardiogram monitoring. Zaporozhye medical journal. 2021;23(6):759-765. (In Ukrainian) DOI: https://doi.org/10.14739/2310-1210.2021.6.239243
  11. Ayoubkhani D, Khunti K, Nafilyan V, et al. Post-covid syndrome in individuals admitted to hospital with covid-19: retrospective cohort study. BMJ. 2021;372:n693. doi:10.1136/bmj.n693
  12. Liang C, Zhang W, Li S, Qin G. Coronary heart disease and COVID-19: A meta-analysis. Med Clin (Barc). 2021;156(11):547-554. doi: 10.1016/j.medcli.2020.12.017. Epub 2021 Jan 28. PMID: 33632508; PMCID: PMC7843088.
  13. Peng Y D, Meng K, Guan HQ, et al. Clinical characteristics and outcomes of 112 cardiovascular disease patients infected by 2019-nCoV. Chinese Journal of Cardiology. 2020; 48 (6): 450-455. https://doi.org/10.3760/cma.j.cn112148-20200220-00105.
  14. Gallo G, Calvez V, Savoia C. Hipertension and COVID-19: current evidence and perspectives. High Blood Press CardiovascPrev. 2022; 29(2):115-123. https://doi: 10.1007/s40292-022-00506-9.
  15. Gong J, Sun Y, Xie L. ACEI/ARB Drug Therapy in COVID-19 Patients: Yes Or No? J Transl Int Med. 2021; 9(1): 8–11.doi: 10.2478/jtim-2021-0011.
  16. Tadic M, Cuspidi C, Grassi G, Mancia G. COVID-19 and arterial hypertension: hypothesis or evidence? J Clin Hypertens. 2020; 22(7): 1120-1126. https:// doi: 10.1111/jch.13925.
  17. Lippi G, Wong J, Henry BM. Hypertension in patients with coronavirus disease 2019 (COVID-19): a pooled analysis. Pol Arch Intern Med. 2020; 130(4): 304–309. https:// doi: 10.20452/pamw.15272.
  18. Akpek M. Does COVID-19 cause hypertension? Angiology. 2022; 73(7):682-687. https://doi: 10.1177/00033197211053903.
  19. Saeed S, Tadic M, Larsen TH, Grassi G, Mancia G. Coronavirus disease 2019 and cardiovascular complications: focused clinical review. J Hypertens. 2021;39(7):1282–1292. https://doi: 10.1097/HJH.0000000000002819.
  20. Voloshyna OB, Zbitnieva VO, Zubok EA, et al. Peculiarities of Arterial Hypertension Course in Patients with Concomitant Diabetes Mellitus in the Post-COVID Period. Lviv Сlinical Bulletin. 2022;1(37)-2(38):75-80. (In Ukrainian) https://doi.org/10.25040/lkv2020.01-02.075]
  21. Yang Y, Wei Z, Xiong C, Qian H. Direct mechanisms of SARS-CoV-2-induced cardiomyocyte damage: an update. Virology Journal. 2022;19(108):1-7. https://doi.org/10.1186/s12985-022-01833-y.
  22. Magadum A, Kishore R. Cardiovascular manifestations of COVID-19 infection. Cells. 2020;9(11):2508. https://doi:10.3390/cells9112508
  23. Wei ZY, Geng YJ, Huang J, Qian HY. Pathogenesis and management of myocardial injury in coronavirus disease 2019. Eur J Heart Fail. 2020; 22(11): 1994–2006.https://doi: 10.1002/ejhf.1967
  24. Siripanthong B, Asatryan B, Hanff TC, et al. The pathogenesis and long-term consequences of COVID-19 cardiac injury. JACC Basic Transl Sci. 2022;7(3):294–308. https://doi: 10.1016/j.jacbts.2021.10.011.
  25. Brogi E, Marino F, Bertini P, Tavazzi G, Corradi F, Fofori F. Cardiac complications in patients with COVID-19: systematic review. Journal of Anesthesia, Analgesia and Critical Care. 2022; 2(18):2-35. https://doi.org/10.1186/s44158-022-00046-7.
  26. Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan. China JAMA Cardiol. 2020; 5(7):802–810. https://doi: 10.1001/jamacardio.2020.0950.
  27. Lang JP, Wang X, Moura FA, Siddiqi HK, Morrow DA, Bohula EA. A current review of COVID-19 for the cardiovascular specialist. Am Heart J. 2020; 226:29–44. https://doi: 10.1016/j.ahj.2020.04.025.
  28. Xu H, Hou K, Xu R, et al. Clinical characteristics and risk factors of cardiac involvement in COVID-19. J Am Heart Assoc. 2020; 9(18): e016807. https://doi: 10.1161/JAHA.120.016807.
  29. Buheruk VV, Vоlоshyna OB, Balashova IV. Inflammatory damage to the myocardium in patients with novel coronavirus disease (COVID-19). Zaporozhye medical journal. 2021; 23 (4): 555-565. (In Ukrainian) DOI: 10.14739/2310-1210.2021. 4.211033
  30. Oikonomou E, Souvaliotis N, Lampsas S, et al. Endothelial dysfunction in acute and longstanding COVID-19: a prospective cohort study. VascPharmacol. 2022; 144: 10697.https://doi: 10.1016/j.vph.2022.106975.
  31. Luo X, Zhou W, Yan X et al. Prognostic value of C-reactive protein in patients with COVID-19. Clin. Infect. Dis. 2020; 71(16): 2174–2179.https://doi: 10.1093/cid/ciaa641.
  32. Jin Y, Ji W, Yang H, Chen S, Zhang W, Duan G. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal Transduction and Targeted Therapy. 2020; 5(1):293. https://doi.org/10.1038/s41392-020-00454-7. PMID: 33361764; PMCID: PMC7758411.
  33. Fanaroff AC, Garcia S, Giri J. Myocardial Infarction During the COVID-19 Pandemic. JAMA. 2021;326(19):1916-1918. doi: 10.1001/jama.2021.19608. PMID: 34714324.
  34. Shia Z, Jiang Y, Weir-McCall J, Wang X, Teng Z. COVID-19 and atherosclerosis: looking beyond acute crises. Emergency and Critical Care Medicine. 2022; 2(1):1-4. https:// doi: 10.1097/EC9.0000000000000031.
  35. Wagner DD, Heger LA. Thromboinflammation: From Atherosclerosis to COVID-19. Arterioscler Thromb Vasc Biol. 2022;42(9):1103-1112. doi: 10.1161/ATVBAHA.122.317162. Epub 2022 Jul 8. PMID: 35861953; PMCID: PMC9420806.
  36. Talanas G, Dossi F, Parodi G. Type 2 myocardial infarction in patients with coronavirus disease 2019. J Cardiovasc Med (Hagerstown). 2021;22(7):603-605. doi: 10.2459/JCM.0000000000001136. PMID: 33186240.
  37. Shah RM, Shah M, Shah S, Li A, Jauhar S. Tacotsubo syndrome and COVID-19: associations and complications. Curr Probl Cardiol. 2021; 46(3): 100763.https://doi: 10.1016/j.cpcardiol.2020.100763.
  38. Katsoularis I., Fonseca-Rodríguez O., Farrington P., Lindmark K., ForsConnolly A-M. Risk of acute myocardial infarction and ischemic stroke following COVID-19 in Sweden: a self-controlled case series and matched cohort study. Lancet. 2021. № 398. Р. 599–607. https://doi.org/10.1016/ S0140-6736(21)00896-5.
  39. Zinellu A, Paliogiannis P, Fois AG, Solidoro P, Carru C, Mangoni AA. Cholesterol and Triglyceride Concentrations, COVID-19 Severity, and Mortality: A Systematic Review and Meta-Analysis With Meta-Regression. Front Public Health. 2021;9:705916. doi: 10.3389/fpubh.2021.705916. PMID: 34490188; PMCID: PMC8417431.
  40. Li G, Du L, Cao X, Wei X, Jiang Y, Lin Y, Nguyen V, Tan W, Wang H. Follow-up study on serum cholesterol profiles and potential sequelae in recovered COVID-19 patients. BMC Infectious Diseases. 2021; 21:299 https://doi.org/10.1186/s12879-021-05984-1.
  41. Kapur S, Lochia P. Statins and COVID-19: emerging evidence on the safety andefficacy of statins in COVID-19. AnnPalliatMed. 2022;11(4):1157-1159. https:// /dx.doi.org/10.21037/ amp-22-442.
  42. Kouhpeicar H, Tabasi HK, Khazir Z, et al. Statin use in COVID-19 hospitalized patients and outcomes: a retrospective study. Frontiers in cardiovascular medicine. 2022; 9:820260. https://doi: 10.3389/fcvm.2022.820260.
  43. Vinciguerra M, Romiti S, Sangiorgi M G, Rose D, Mirald F, Greco E. SARS-CoV-2 and Atherosclerosis: Should COVID-19 Be Recognized as a New Predisposing Cardiovascular Risk Factor? J Cardiovasc Dev Dis. 2021; 8(10): 130. https://doi: 10.3390/jcdd8100130.
  44. INSPIRATION-S Investigators. Atorvastatin versus placebo in patients with covid-19 in intensive care: randomized controlled trial. BMJ. 2022;376:e068407. doi: 10.1136/bmj-2021-068407. PMID: 34996756.
  45. Bonilla HMG, Ganta N, Alebna P, Ngwa J, Ogunti R. Effect of statin in hospitalized patient with COVID-19. J Am Coll Cardiol. 2021; 77(18): 3171.https://doi: 10.1016/S0735-1097(21)04526-5.