N 5 (177) 2021. P. 53–59

BIOCHEMISTRY OF SHORT-TERM AND LONG-TERM MEMORY

Odesa National Medical University MH of Ukraine, Odesa, Ukraine

DOI 10.54229/2226-2008-2021-5-10

Memory is provided by changes in synapses in neural circuits: short-term memory — by functional changes in a separate sensory neuron and a separate motor neuron, long-term memory — by structural changes (regrowth of new synapses). During the formation of short-term memory in synapses, cAMP, protein kinase A, are used, which act inside the cell and transmit a signal that cause the release of large amounts of the neurotransmitter glutamate.

Two independent mechanisms are involved in the formation of long-term memory:

— one triggers a long-term strengthening of synaptic connections, directing protein kinase A to the nucleus, which activates the CREB protein, thereby turning on the structural genes encoding proteins necessary for the growth of new synaptic connections;

— the other reinforces the already formed memory, supporting the newly formed synaptic endings, which requires local synthesis of proteins.

Key words: short-term memory, long-term memory, synaptic connections.

 

References

  1. Kandel E. V poiskah pamiati. Vozniknovenie novoj nauki o chelovecheskoj psihike [In search for memory. The emergence of a new science of the human psyche]. Moscow: Astrel’, CORPUS;2012. 736 p. (In Russian)
  2. Brunelli M, Castelluci V, Kandel ER. Synaptic facilitation and behavional sensitization in Aplysia: Possible Role of serotonin and cyclic AMP. Science. 1976 Dec 10;194(4270):1178-81. DOI: 10.1126/science.186870.
  3. Bacskai BI, Hocher B, Mahaut-Smith M, et al. Spatially resolved dynamics of cAMP and protein kinase. A subunits in Aplysia sensory neurons. Science. 1993. 260:222-226. https://doi.org/10.1126/science.7682336.
  4. Siegelbaum S, Camardo YS, Kandel ER. Serotonin and cAMP close single K+channels in Aplysia sensory neurons. Nature. 1982;299:413-417.
  5. Castellucci VF, Kandel ER, Schwartz YH, Wilson FD, Nairn AC, Greengard P. Intracellular injection of the catalytic subunit of cyclic AMP-dependent protein kinase simulates facilitation of transmitter release underlying behavioral sensitization in Aplysia. Proc Natl Acad Sci USA. 1980;77(12):7492-7496. DOI: 10.1073/pnas.77.12.7492.
  6. Dale N, Kandel ER. L-glutamate may be the fast excitatory transmitter of Aplysia sensory neuros. Proc Natl Acad Sci USA. 1993;90(15):7163- 7167. DOI: 10.1073/pnas. 90.15.7163.
  7. Ganong WF. Review of Medical Physiology. 22nd Edition. New York, McGraw-Hill Medical;2005. 927 p.
  8. Wang H, Xu I, Lazarovici P, Quirion R, Zheng W. c AMP Response element — binding protein (CREB): a possible signaling molecule link in the pathophysiology of schizophrenia. Front Mol Neurosci. 2018 Aug 30;11: 255. DOI: 10.3389/fnmol.2018.00255.
  9. Carlezon WA, Duman RS, Nestler EI. The many faces of CREB. Trends Neurosci. 2005;28:436-445. DOI: 10.1016/j.tins.2005.06.005.
  10. Li BX, Gardner R, Xue C, et al. Systemic inhibition of CREB is well-tolerated in vivo. Sci Rep. 2016;6:34513. https://doi.org/10.1038/srep34513.
  11. Casadio A, Martin KC, Giustello M, et al. A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell. 1999;22:221-237. DOI: 10.1016/s0092-8674(00)81653-0.
  12. Si K, Giustetto M, Etrin A, et al. A neuronal isoform of CPEB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in aplysia. Cell. 2003 Dec 26; 115(7):893-904. DOI: 10.1016/s0092-8674(03)01021-3.
  13. Steward O, Schuman EM. Protein synthesis at synaptic sites on dendrites. Annu Rev Neurosci. 2001;24:299-325.
  14. Bartsch D, Ghirardi M, Casadio A, et al. Enhancement of memory-related long-term facilitation by ApAF, a novel transcription factor that acts downstream from both CREB1 and CREB2. Cell. 2000;103:595-608. DOI: 10.1016/S0092-8674(00)00163-X.
  15. Agnihotri NJ, Hawkins RD, Kandel ER, Kentros CG. The long-term stability of new hippocampal place fields requires new protein synthesis. Proc Natl Acad Sci USA. 2004. 2004;101(10):3656-61. DOI: 10.1073/pnas.0400385101.
  16. Kentros CG, Agnihotri NT, Streater S, Hawkins RD, Kandel ER Increased attention to spatial context increased both place field stability and spatial memory. Neuron. 2004; 42(2):283-95. DOI: 10.1016/s0896-6273(04)00192-8.
  17. Theis M, Si K, Kandel ER. Two previously undescribed members of the mouse CPEB family of genes and their inducible expression in the principal cell layers of the hippocampus. Proc Natl Acad Sci USA. 2003;100(16): 9602-9607. https://doi.org/10.1073/pnas. 1133424100.
  18. Poels I, Vanden Broeck I. Insect basic leucine zipper proteins and their role in cyclic AMP depending regulation of gene expression. Int Rev Cytol. 2004; 241:277-309. DOI: 10.1016/S0074-7696(04)41005-5.
  19. Martin KC, Michael D, Rose YC, et al. MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia. Neuron. 1997;18(6):899-912. DOI: 10.1016/s0896-6273(00)80330-x.
  20. Saito TH, Uda S, Tsuchiya T, Ozaki Y, Kukoda S. Temporal Decoding of MAP Kinase and CREB Phosphorylation by Selective Immediate Early Gene Expression. PLoS One. 2013;8(3):e57037. DOI: 10.1371/journal.pone.0057037.
  21. Yimenez-Moreno R, Farret- Ramos AA, Valle Ayala A, Trujillo-Paredes N, Murillo-Rodriguez E. Molecular Insights of CREB and MAP-K Phosphorylation by Modafinil in Wake-Related Brain Areas. Curr Mol Pharmacol. 2018;11(2):140-148. DOI: 10.2174/1874467209666161214152006.
  22. Lonze BE, Gienty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002;35(4):605-23. DOI: 10.1016/s0896-6273(02)00828-0.
  23. Merz K, Herold S, Lie DC. CREB in adult neurogenesis-master and partner in the development of adult — born neurons. Eur. J. Neurosci. 2011;33:1078-1086. DOI: 10.1111/ j.1460-9568.2011.07606.x.
  24. Ran I, Laptante I, Lacaille YC. CREB-Dependent Transcriptional Control and Quantal Changes in Persistent Long-Term Potentiation in Hippocampal Interneurons. J Neurosci. 2012;32(18):6335-6350. DOI: 10.1523/JNEUROSCI.5463-11.2012.
  25. Gass P, Riva MA. CREB, neurogenesis and depression. Bioessays. 2007;29(10):957-61. DOI: 10.1002/bies. 20658.
  26. Bartolotti N, Lazarov O. CREB signals as PBMC-based biomarkers of cognitive dysfunction: A novel perspective of the brain-immune axis. Brain Behav Immun. 2019;78:9-20. DOI: 10.1016/ j.bbi.2019.01.004.
  27. Pardo L, Valor LM, Eraso-Pichot A, et al. CREB Regulates Distinct Adaptive Transcriptional Programs in Astrocytes and Neurons. Sci Reports. 2017;7:6390. DOI: 10.1038/s41598-017-06231-x.
  28. Si K, Lindquist S, Kandel ER. A neuronal isoform of the aplysia CPEB has prion-like properties. Cell. 2003;115(7):879-891. DOI: 10.1016/s0092-8674(03)01020-1.
  29. Pradines E, Loubet D, Schneider B, Launay JM, Kellermann O, Mouillet-Richard S. CREB-dependent gene regulation by prion protein: impact on MMP-9 and beta-dystroglycan. Cell Signal. 2008;20(11):2050-2058. DOI: 10.1016/j.cellsig.2008.07.016.
  30. Mouillet-Richard S., Schneider B., Pradines E., et al. Cellular prion protein signaling in serotonergic cells. Ann. N. Y. Acad. Sci. 2007;1096: 106-119. DOI: 10.1196/annals.1397.076.
  31. Gavin R, Lidon L, Ferrer I, Del Rio JA. The Quest for cellular prion protein functions in the aged and neurodegenerating brain. Cells. 2020;9(3):591. DOI: 10.3390/cells9030591.
  32. Kandel ER. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol. Brain. 2012;5:14. DOI: 10.1186/1756-6606-5-14.
  33. Kandel ER. The molecular biology of memory storage a dialogue between genes and synapses. Science. 2001;294(5544):1030-1038. DOI: 10.1126/science.1067020.
  34. Kandel ER, Dudai Y, Mayford MR. The molecular and systems biology of memory. Cell. 2014;157(1):163-186. DOI: 10.1016/j.cell.2014.03.001.
  35. Asok A., Leroy F., Rayman J.B., Kandel E. R. Molecular Mechanisms of the Memory Trace. Trends Neurosci. 2019;42(1):14-22. DOI: 10.1016/j.tins.2018.10.005.