N 3 (188) 2024. P. 72–78

NOVEL COPPER-LOADED DRESSING FOR WOUND HEALING: A BIBLIOMETRIC ANALYSIS

Ukrainian-Swedish Research Center “SUMEYA”, Sumy State University, Medical Institute, Sumy, Ukraine

DOI 10.32782/2226-2008-2024-3-12

Introduction. In recent years, there has been a significant increase in the number of patients requiring wound care. The attention is on the time required for wound healing and the growing risk of antibiotic resistance. The 2022 Global Antimicrobial Resistance and Use Surveillance System (GLASS) report highlights alarming resistance rates among common bacterial pathogens. Thus, it is important to emphasize new alternative methods of wound care to address antibiotic resistance. Metal-based nanoparticles, such as copper nanoparticles (CuNPs), are a promising material for tissue regeneration and preventing the development of antibiotic resistance of microorganisms.

The aim is a bibliographic analysis of data on the use of copper nanoparticles as an antimicrobial agent for wound healing (and for other medical purposes).

Materials and methods. The authors searched for information in electronic databases such as PubMed, Scopus, Web of Science, and Google Scholar using the main keywords. Tools for bibliometrics network visualization (VOSviewer) were used in the analysis.

Results. We studied 142 publications in the Scopus database, where the main keywords were “copper nanoparticles” and “wound healing”. The results show that over the past 14 years, the number of publications on the research topic has begun to increase. The subject is mostly studied by researchers from China, India, and the USA, which indicates the relevance of the current subject among the scientists. From 2010 to 2024, a bibliometric analysis on the Scopus database identified four chronological stages based on keywords: 1) synthesis of copper nanoparticles and description of the antimicrobial properties; 2) antibacterial activity in wound healing; 3) inception of new biomaterials to wound care.

Thus, copper nanoparticles and their properties are actively studied. The ability of CuNPs to inhibit bacterial growth and promote angiogenesis can be used in wound healing and added to dressings to stimulate tissue regeneration.

Key words: copper nanoparticles, CuNPs, wound healing, tissue regeneration, wound dressing.

BIBLIOGRAPHY

  1. Global antimicrobial resistance and use surveillance system (GLASS) report 2022. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO. Available from: https://www.who.int/publications/i/item/9789240062702.
  2. Vincent M, Duval RE, Hartemann P, Engels-Deutsch M. Contact killing and antimicrobial properties of copper. J Appl Microbiol. 2018 May; 124(5): 1032–1046. doi: 10.1111/jam.13681.
  3. Sharma P, Goyal D, Chudasama B. Ecotoxicity of as-synthesised copper nanoparticles on soil bacteria. IET Nanobiotechnol. 2021 Apr; 15(2): 236–245. doi: 10.1049/nbt2.12039.
  4. Malandrakis AA, Kavroulakis N, Chrysikopoulos CV. Copper nanoparticles against benzimidazole-resistant Monilinia fructicola field isolates. Pestic Biochem Physiol. 2021 Mar; 173: 104796. doi: 10.1016/j.pestbp.2021.104796.
  5. Mendes C, Thirupathi A, Corrêa MEAB, Gu Y, Silveira PCL. The Use of Metallic Nanoparticles in Wound Healing: New Perspectives. Int J Mol Sci. 2022 Dec 6; 23(23): 15376. doi: 10.3390/ijms232315376.
  6. Vivcharenko V, Trzaskowska M, Przekora A. Wound Dressing Modifications for Accelerated Healing of Infected Wounds. Int J Mol Sci. 2023 Apr 13; 24(8): 7193. doi: 10.3390/ijms24087193.
  7. Sakthi Devi R, Girigoswami A, Siddharth M, Girigoswami K. Applications of Gold and Silver Nanoparticles in Theranostics. Appl Biochem Biotechnol. 2022 Sep; 194(9): 4187–4219. doi: 10.1007/s12010-022-03963-z.
  8. Nqakala ZB, Sibuyi NRS, Fadaka AO, Meyer M, Onani MO, Madiehe AM. Advances in Nanotechnology towards Development of Silver Nanoparticle-Based Wound-Healing Agents. Int J Mol Sci. 2021 Oct 19; 22(20): 11272. doi: 10.3390/ ijms222011272.
  9. Toczek J, Sadłocha M, Major K, Stojko R. Benefit of Silver and Gold Nanoparticles in Wound Healing Process after Endometrial Cancer Protocol. 2022 Mar 16; 10(3): 679. doi: 10.3390/biomedicines10030679.
  10. Woźniak-Budych MJ, Staszak K, Staszak M. Copper and Copper-Based Nanoparticles in Medicine-Perspectives and Challenges. 2023 Sep 18; 28(18): 6687. doi: 10.3390/molecules28186687.
  11. Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arabian Journal of Chemistry. 2019; 12(7): 908–931 doi: https://doi.org/10.1016/j.arabjc.2017.05.011.
  12. Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology. 2022 Jun 7; 20(1): 262. doi: 10.1186/s12951-022-01477-8.
  13. Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington (DC): National Academies Press (US); 2001. doi: 10.17226/10026.
  14. Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine. 2017 May 24; 12: 3941–3965. doi: 10.2147/IJN.S134526.
  15. Gromadzka G, Tarnacka B, Flaga A, Adamczyk A. Copper Dyshomeostasis in Neurodegenerative Diseases-Therapeutic Implications. Int J Mol Sci. 2020 Dec 4; 21(23): 9259. doi: 10.3390/ijms21239259.
  16. Ingle AP, Duran N, Rai M. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol. 2014 Feb; 98(3): 1001–9. doi: 10.1007/s00253-013-5422-8.
  17. Crisan MC, Teodora M, Lucian M. Copper Nanoparticles: Synthesis and Characterization, Physiology, Toxicity and Antimicrobial Applications. Applied Sciences. 2021; 12(1): 141. https://doi.org/10.3390/app12010141.
  18. Khodashenas B, Ghorbani HR. Synthesis of Copper Nanoparticles: An Overview of the Various Methods. Korean Journal of Chemical Engineering. 2021; 31 (7): 1105–9. doi: 10.1007/s11814-014-0127-y.
  19. Sandoval SS, Silva N. Review on Generation and Characterization of Copper Particles and Copper Composites Prepared by Mechanical Milling on a Lab-Scale. Int J Mol Sci. 2023; 24(9): 7933. doi: 10.3390/ijms24097933.
  20. Iliger KS, Sofi TA, Bhat NA, Ahanger FA, Sekhar JC, Elhendi AZ, Al-Huqail AA, Khan F. Copper nanoparticles: Green synthesis and managing fruit rot disease of chilli caused by Colletotrichum capsici. Saudi J Biol Sci. 2021 Feb; 28(2): 1477–1486. doi: 10.1016/j.sjbs.2020.12.003.
  21. Akintelu SA, Folorunso AS, Folorunso FA, Oyebamiji AK. Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. 2020; 6(7): 04508. doi: 10.1016/j.heliyon.2020.e04508.
  22. Amjad R, Mubeen B, Ali SS, et al. Green Synthesis and Characterization of Copper Nanoparticles Using Fortunella margarita Leaves. 2021 Dec 13;13(24): 4364. doi: 10.3390/polym13244364.
  23. Thakur S, Sharma S, Thakur S, Rai R. Green Synthesis of Copper Nano-Particles Using Asparagus adscendens Roxb. Root and Leaf Extract and Their Antimicrobial Activities. International Journal of Current Microbiology and Applied Sciences. 2018; 7(04): 683–94. doi: 10.20546/ijcmas.2018.704.077.
  24. Shende S, Ingle AP, Gade A, Rai M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol. 2015 Jun; 31(6): 865–73. doi: 10.1007/s11274-015-1840-3.
  25. Wu S, Rajeshkumar S, Madasamy M, Mahendran V. Green synthesis of copper nanoparticles using Cissus vitiginea and its antioxidant and antibacterial activity against urinary tract infection pathogens. Artif Cells Nanomed Biotechnol. 2020; 48(1): 1153–1158. doi: 10.1080/21691401.2020.
  26. Mohamed EA. Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates. 2020 Jan 30; 6(1): e03123. doi: 10.1016/j.heliyon.2019.e03123.
  27. Ma X, Zhou S, Xu X, Du Q. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry: a narrative review. Front Surg. 2022 Aug 5; 9: 905892. doi: 10.3389/fsurg.2022.905892.
  28. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017 Feb 14; 12: 1227–1249. doi: 10.2147/IJN.S121956.
  29. Fu Y, Chang FM, Giedroc DP. Copper transport and trafficking at the host-bacterial pathogen interface. Acc Chem Res. 2014 Dec 16; 47(12): 3605–13. doi: 10.1021/ar500300n.
  30. Denluck L, Wu F, Crandon LE, Harper BJ, Harper SL. Reactive oxygen species generation is likely a driver of copper based nanomaterial toxicity. Environ Sci Nano. 2018 Jun 1; 5(6): 1473–1481. doi: 10.1039/C8EN00055G.
  31. Salah I, Parkin IP, Allan E. Copper as an antimicrobial agent: recent advances. RSC Adv. 2021 May 19; 11(30): 18179–18186. doi: 10.1039/d1ra02149d.
  32. Ermini ML, Voliani V. Antimicrobial Nano-Agents: The Copper Age. ACS Nano. 2021 Apr 27; 15(4): 6008–6029. doi: 10.1021/acsnano.0c10756.
  33. Raffi M, Mehrwan S, Bhatti TM, et al. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annals of Microbiology. 2010; 60(1): 75–80. doi: 10.1007/s13213-010-0015-6.
  34. Salvo J, Sandoval C. Role of copper nanoparticles in wound healing for chronic wounds: literature review. Burns Trauma. 2022 Jan 21; 10: tkab047. doi: 10.1093/burnst/tkab047.
  35. Sandoval C, Ríos G, Sepúlveda N, Salvo J, Souza-Mello V, Farías J. Effectiveness of Copper Nanoparticles in Wound Healing Process Using In Vivo and In Vitro Studies: A Systematic Review. 2022 Aug 31; 14(9): 1838. doi: 10.3390/pharmaceutics14091838.
  36. Hsueh YH, Tsai PH, Lin KS. pH-Dependent Antimicrobial Properties of Copper Oxide Nanoparticles in Staphylococcus aureus. Int J Mol Sci. 2017 Apr 8; 18(4): 793. doi: 10.3390/ijms18040793.
  37. Goswami AG, Basu S, Banerjee T, Shukla VK. Biofilm and wound healing: from bench to bedside. Eur J Med Res. 2023 Apr 25; 28(1): 157. doi: 10.1186/s40001-023-01121-7.
  38. Han G, Ceilley R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv Ther. 2017 Mar; 34(3): 599–610. doi: 10.1007/s12325-017-0478-y.
  39. Diao W, Li P, Jiang X, Zhou J, Yang S. Progress in copper-based materials for wound healing. Wound Repair Regen. 2023 Oct 11. doi: 10.1111/wrr.13122.
  40. Nuutila K, Eriksson E. Moist Wound Healing with Commonly Available Dressings. Adv Wound Care (New Rochelle). 2021 Dec; 10(12): 685–698. doi: 10.1089/wound.2020.1232.
  41. Simões D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ. Recent advances on antimicrobial wound dressing: A review. Eur J Pharm Biopharm. 2018 Jun; 127: 130–141. doi: 10.1016/j.ejpb.2018.02.022.
  42. Matica MA, Aachmann FL, Tøndervik A, Sletta H, Ostafe V. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int J Mol Sci. 2019 Nov 24; 20(23): 5889. doi: 10.3390/ijms20235889.
  43. Hanan NA, Chiu HI, Ramachandran MR, Tung WH, Mohamad Zain NN, Yahaya N, Lim V. Cytotoxicity of Plant-Mediated Synthesis of Metallic Nanoparticles: A Systematic Review. Int J Mol Sci. 2018 Jun 11; 19(6): 1725. doi: 10.3390/ ijms19061725.
  44. Xiong P, Huang X, Ye N, et al. Cytotoxicity of Metal-Based Nanoparticles: From Mechanisms and Methods of Evaluation to Pathological Manifestations. Adv Sci (Weinh). 2022; 9(16): 2106049. doi: 10.1002/advs.202106049.